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ABSTRACT 
In this paper, several low and high Reynolds number 

versions of k-ε and Reynolds stress turbulence models have 

been evaluated in a channel and a square duct flow with and 

without a magnetic field by comparing the predictions with 

direct numerical simulations data. The simulations are 

performed using FLUENT solver. The additional source terms 

for magnetic field effects on turbulence have been included 

through user-defined functions. A systematic assessment of the 

predicted mean flow, turbulence quantities, frictional losses 

and computational costs of the various turbulence models is 

presented.  

All the models predict mean axial velocity reasonably well, 

but the predictions of turbulence parameters are less accurate. 

Velocity predictions are worse for the square duct flow due to 

secondary flows generated by the turbulence. The 

implementation of the MHD sources generally improves 

predictions in MHD flows, especially for low-Re k-ε models. 

The high-Re models using the wall treatments show little 

improvement, perhaps due to the lack of MHD effects in the 

wall formulations. Finally, at low Reynolds numbers, the Lam-

Bremhorst (LB) low-Re k-ε model was found to give better 

predictions than other models for both hydrodynamic and 

magnetic field influenced turbulent flows. 

 
NOMENCLATURE 

''

jiij uuR  Reynolds stresses (m
2
/s

2
) 

LF              Average Lorentz force (N/m
3
) 

               Dynamic viscosity (N-s/m
2
) 

t              Turbulent dynamic viscosity (N-s/m
2
) 

 /     Kinematic viscosity (m
2
/s) 

t              Turbulent kinematic viscosity (m
2
/s) 

             Density (kg/m
3
) 

t             Time (s) 

x            Spatial coordinate (m) 

u            Ensemble average velocity (m/s) 

'u            Velocity fluctuations (m/s) 

p             Ensemble average pressure (N/m
2
) 

'p             Pressure fluctuations (N/m
2
) 

k             Turbulent kinetic energy (m
2
/s

2
) 

             Turbulent dissipation rate (m
2
/s

3
) 

kG            Turbulent kinetic energy production rate (kg/(m-s
3
))  

y              Normal distance from wall (m) 

 /yuy   Normalized wall normal distance 

 /wu  Friction velocity (m/s) 

w            Wall stress (N/m
2
) 

mRe           Magnetic Reynolds number 

L              Characteristics length (m) 

              Electrical conductivity (1/(ohm-m)) 

0             Permeability of free space (h/m) 

v


             Velocity vector (m/s) 

               Electric potential (V/m
2
) 

'              Electric potential fluctuations (V/m
2
) 

 
0000 ,, zyx BBBB 


  Applied magnetic field vector (Tesla) 

b


             Induced magnetic field vector (Tesla) 

bBB


 0
 Total magnetic field vector (Tesla) 

J


               Current density vector (A/m
2
) 



M

vwuwvuvvuuwwkS '' ,'' ,'' ,'' ,'' ,'' , ,
 Source terms to k ,  , ''ww , ''uu , 

''vv , ''uw , ''vw , and ''vu  equations (kg/m-s
3
), where 

 2/ uSS M

k

M

k  . 

Re             Friction Reynolds number 

Ha             Hartmann number 

Re              Bulk Reynolds number 

z

p



              Mean axial pressure gradient (N/m3) 

bW               Bulk axial velocity (m/s) 

kmn             Levi-Civita symbol 

ij               Kronecker’s delta 

n

               Partial derivative in wall normal direction (1/m) 

kji  , ,          Index notation 

zyx  , ,         Spatial coordinates (m) 

 
INTRODUCTION 

Reynolds-Averaged Navier-Stokes (RANS) 

simulations are widely used to optimize various industrial 

flows because of their low computational cost. However, it is 

well-known that their accuracy in complex flows is limited by 

the difficulties in modeling the complex turbulence 

interactions through transport equations for the mean flow 

variables [1]. Significant effort has already been devoted to 

validation, improvement, and custom tailoring of these models 

of turbulent flows for different classes of flows [2-8]. This is 

usually done through comparisons with experimental data. 

However, with the availability of Direct Numerical Simulation 

(DNS) and Large Eddy Simulation (LES) computed flow 

fields, it has also become possible to evaluate the turbulence 

models using DNS / LES data [2, 9-11]. 

Despite the importance of magnetic fields in material 

processing, very limited work [12-15] exists on improving and 

testing turbulence models to include the effects of a magnetic 

field on the turbulence. A few modified models with magnetic 

field effects have been tested in channel flow/rectangular duct 

flow with a partial magnetic field (low-Re k-ε and Reynolds 

stress model (RSM)) [12-13], pipe flow (low-Re k-ε) [14] and 

free surface channel flow (k-ε) [15]. The modifications 

proposed in the latter two of these studies (pipe flow [14] and 

free surface channel flow [15]) were based upon bulk 

properties of the flow and cannot be generalized to other 

flows. The first two studies (k-ε and RSM, [12-13]) relate the 

magnetic field generated source terms in the turbulent 

transport equations to the local properties, and therefore can 

be generalized to other flows.  However, these models have 

been so far tested only in a turbulent channel flow and in a 

rectangular duct with a partial magnetic field. For the 

rectangular duct with a partial magnetic field only the mean 

velocity was compared. The mean velocity obtained with this 

model was reported to show better agreement with 

measurements but no comparisons are available for turbulence 

quantities [12]. 

The present work reports a systematic assessment of 

a number of turbulence models, and their variants, for 

magnetohydrodynamic (MHD) flow in two representative 

geometries: a) channel flow, and b) a square duct flow. 

Confined internal flows through long pipes and ducts are 

relevant in many commercial flows. The square duct flow is 

more complicated to predict because of the turbulence-driven 

secondary flows [16]. The various models considered are: a) 3 

variants of high-Re two-equation models (Standard k-ε (SKE) 

[17], RNG k-ε (RNG) [18], Realizable k-ε (RKE) [19], b) 6 

low-Re k-ε models (Abid [20], Lam-Bremhorst (LB) [21], 

Launder-Sharma (LS) [22], Yang-Shih (YS) [23], Abe-

Kondoh-Nagano (AKN) [24], and Chang-Hsieh-Chen (CHC) 

[25-26]) and c) 2 second-momentum closure Reynolds Stress 

Models with Linear Pressure Strain (RSM-LPS) and Stress-

Omega (RSM-Sω) [27-31]) models along with standard wall 

functions (SWF) [32], non-equilibrium wall functions 

(NEWF) [33], and two-layer wall treatment combined with 

single-blended wall function (enhanced wall treatment 

(EWT)) [34-35, 30].  The simulations have been performed 

using FLUENT [30] and the effect of magnetic field on 

turbulence, as given by Kenjereš and Hanjalić [12-13], has 

been incorporated through additional source terms using user-

defined functions (UDF). Mean velocities, turbulent kinetic 

energy (TKE), root mean square (RMS) of velocity 

fluctuations, MHD sources/sinks and frictional losses are 

compared against available DNS data in channel and square 

duct flows.  
 

TURBULENCE MODELS TESTED 
The ensemble averaged Navier-Stokes equations are solved 

[36-37]: 

                                    

1i j iji i
L

j i j j j

u u Ru up
F

t x x x x x



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                        (1) 

where, :  Reynolds Stressesij i jR u u   , and LF  is the average 

Lorentz force due to magnetic field.  

 

k-ε Models 

The k-ε models use Boussinesq hypothesis for Reynolds 

stresses: 
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where Kronecker delta, 1,  if i=j, else 0ij   

The base equations for two equation k-ε models are given as;                              

   k k
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                    (2) 
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Where, / 2i ik u u  , i i
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u u

x x
 
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
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i
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x



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The formulations for ,  ,  ,   and A B C D E along with other 

parameters for various k-ε turbulence models (standard [17], 

RNG [18], Realizable [19], low-Re: Abid [20], Lam-

Bremhorst (LB) [21], Launder-Sharma (LS) [22], Yang-Shih 

(YS) [23], Abe-Kondoh-Nagano (AKN) [24], and Chang-

Hsieh-Chen (CHC) [25-26] ) tested are given elsewhere [17-

26].  

 

Reynolds stress models (RSM) 
The exact transport equation for the six independent 

Reynolds stresses ( i ju u  ) in RSM can be written as [27-31]: 

                            

    L T
i j k i j ij ij ij ij ij

k

u u u u u P D D
t x
   

 
        

 
                 (4) 
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(II: Molecular diffusion), 
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'  (IV: Pressure strain), 
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ji
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k k

uu

x x
 




 
 (V: Dissipation). 

Of these five terms, the last three ( T
ijD , 

ij  and
ij ,) require 

modeling, with the pressure strain ( ij ) and dissipation (
ij
) 

considered to be critical [28]. The turbulent diffusion term (i.e.
T
ijD , III) is modeled the same way as the molecular diffusion 

term [38]: 

 T t
ij i j

k k k

D u u
x x





  
   

  

, where 
2

t

k
C 


 ,  

0.09,   0.82kC                                                                  (5) 

The dissipation tensor is defined from ε as:  

 2 / 3ij ij                                                                        (6) 

The dissipation rate (i.e. ε) in the above equation is 

defined by same equations (with ( 1.0  )) as in SKE.  

The main difference between RSM models is the handling of 

pressure strain ( ij ) and many different ways have been 

proposed for high- and low- Re versions [27-28, 31, 39-41]. 

The current work tests low- and high-Re versions of the 

Linear Pressure Strain (LPS) model and low-Re stress omega 

model formulations [30-31]. The high-Re version of LPS is 

used with SWF and NEWF. The low-Re version of LPS is 

used in conjunction with EWT. 

 

Near-Wall treatment 
Near-wall treatment is very important in wall-

bounded turbulent flows. Walls have high velocity gradients 

and thus are the main source of turbulence production.  

These wall regions are differently handled in different models. 

The low-Re k-ε models (i.e. Abid, LB, LS, YS, AKN, CHC, 

RSM-Sω  with low Re-correction) use damping functions and 

need a fine grid to integrate up to viscous sublayer (
2/ ( )wy yu u      <=1) [42]. In high-Re k-ε models (i.e. 

RKE, SKE, RNG etc.), the near-wall region is usually handled 

in two ways [30-33]: i) wall function approach without 

resolving the buffer and the viscous sublayers (applicable for 

30< y
<300: SWF and NEWF), ii) Two-layer model for ε and 

turbulent viscosity with single blended law of wall for mean 

velocity (EWT). Formulations for the different wall treatment 

methods (SWF, NEWF and EWT) are given elsewhere [30, 

32-34, 43-44]. 

RSM model needs boundary conditions for Reynolds 

stresses in addition to the above wall treatment procedures. 

With SWF and NEWF, TKE is calculated using 0.5 i ik u u   

away from the wall and in the near wall cells, a transport 

equation, similar to as in SKE, for TKE (with 0.82k  ) is 

solved with / 0k n    at the wall. Afterwards, the individual 

Reynolds stresses are calculated using equation given below in 

near wall cells (derived based upon equilibrium of Reynolds 

stresses, i.e. production=dissipation) [30]. 

/ 1.098t tu u k   , / 0.247u u k 
   , / 0.655u u k 

   , 

/ 0.255tu u k
                                                                      (7) 

Where, subscript t ,   and   stands for local tangential, 

normal and binormal coordinates respectively. With EWT, the 

normal derivatives of Reynolds stresses are taken zero at the 

wall. 

 

MHD formulations 
When the Magnetic Reynolds number, 

)(Re 0Lvm


 , is <1 (such as for liquid metals), the induced 

magnetic field is negligible relative to the applied field. Based 

on Ohm’s law and conservation of charge, coupled equations 

for electric potential, , and Lorentz force, 
LF  can be solved 

as follows [45, 30].                       

  2

0v B    and  0 0LF v B B                           (8)                           

In time varying fields, and when the induced current 

is significant, (i.e. Rem
>1), the Maxwell’s equations are 

combined with Ohm’s law to obtain a transport equation for 

the induced magnetic field, b  [45, 30]. 
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    (9) 

 
oB B b  ;                  

0/ BJ


 ;                     
LF J B          

In both above methods, the Lorentz force is applied as a 

source term in the momentum equations. 

 

Effect of magnetic field on turbulence in RANS 
turbulence models 

Many researchers [12-15, 46] improved the 

conventional non-MHD RANS turbulence models for the 

effect of the magnetic field on the turbulence in low magnetic 

Reynolds number liquid metal MHD flows. Ji and Gardner 

[14] proposed and tested source terms for magnetic field 

damping effects on turbulence using a k-ε model on a 

turbulent conducting liquid flow in an insulated pipe. Velocity 

profiles, skin friction, temperature profiles, Nusselt numbers 

showed agreement with available experimental data for range 

of Re and Ha. The biggest shortcoming of this model was the 

usage of bulk Stuart number (or interaction parameter, 

Ha
2
/Re) to define the turbulence damping terms making it a 

bulk flow dependent model and only applicable in the standard 

problems where bulk Stuart number can be easily defined. 

Smolentsev et al [15] proposed different source terms for k-ε 

models but again based up on the bulk flow Stuart number. 

The model was found to match experiments closely in free 

surface channel flow.  

Galperin [46] proposed a second-moment closure 

model for MHD turbulence, although this model was not 

numerically tested on conventional flows. Kenjereš and 

Hanjalić [12-13] proposed new source terms for k-ε and 

second-moment closure models (RSM). The improved k-ε 

model was validated with the DNS results in a channel flow 

under transverse magnetic field. After validation, the model 

was used in a 3-d developing rectangular duct flow with 

partial magnetic field and model was found performing well 

for mean velocities. No assessment for turbulence parameters 

was made in rectangular duct flow. Kenjereš and Hanjalić [12-

13] also proposed a similar closure for i ju u  equations for 

MHD effects in RSM as proposed by Galperin [46]. This 

closure for RSM showed considerable improvement of results 

in a channel flow. The current study includes the models 

proposed by Kenjereš and Hanjalić’s [12-13] for the channel 



and square duct flows. The following modifications were 

made to the models. 

k-ε model :  

k-equation:     2 2

0 1 0exp / /M M

kS B k C B k                 (10)                                                                

ε-equation:     2 2

0 1 0exp / /M MS B C B k                   (11) 

where, 
1 0.025MC    

Reynolds Stress Model (RSM) MHD source terms:   

After simplification for y-directional (vertical) magnetic field 

and some algebra the six independent Reynolds stress 

transport equations can be derived with the following MHD 

source terms; 

 ' 'w w -equation:  2

' ' 0 02 ' '/ 2 ' 'M

w w y yS B w x B w w            (12)                                                                  

' 'v v -equation: 
' ' 0M

v vS                                                          (13) 

 ' 'u u -equation:  2

' ' 0 02 ' '/ 2 ' 'M

u u y yS B u z B u u                   (14) 

' 'u v -equation:  2

' ' 0 0' '/ ' 'M

u v y yS B v z B u v                      (15) 

' 'w u -equation: 

 2

' ' 0 0 0' '/ ' '/ 2 ' 'M

w u y y yS B u x B w z B w u                       (16) 

' 'w v -equation:   2

' ' 0 0' '/ ' 'M

w v y yS B v x B w v           (17) 

Source term for scalar dissipation rate (ε) is defined as [13];               

0.5 /M M

iiS S k                                                                     (18)                                                                                           

It can be seen that all the source terms due to the magnetic 

field are negatively correlated with the corresponding 

Reynolds stress therefore sinks to the Reynolds stresses. It is 

interesting to note that the magnetic field causes no direct sink 

to the Reynolds normal stress parallel to magnetic field (i.e. 

' 'v v ). The indirect suppression effect on ' 'v v  is via Reynolds 

shear stresses. In the above sinks, the terms involving 

correlation of velocity fluctuation with electric potential 

gradient require modeling and cannot be incorporated directly 

in RSM. Kovner and Levin  [47] suggested a way to model 

electric potential-velocity correlation. Galperin [46] and later 

Kenjereš and Hanjalić [12-13] followed their method and 

came up with following formulation for the correlation;        
' ' ' '

0 0'/ '/k kmn m n i k kmn i m nx u B u x u u B                        

(19) 

Galperin [46] proposed 0 1  . Kenjereš and Hanjalić [13] 

proposed 0.6  via MHD channel flow. In the current work, 

the value of   as proposed by Kenjereš and Hanjalić is used. 

The above discussed two formulations for k-ε and RSM for 

the effect of magnetic field on turbulence have been 

implemented using a UDF with the magnetic induction and the 

electric potential methods [30]. More details on various 

turbulence models, wall treatment approaches, magnetic 

induction and electric potential method for MHD calculations 

can be found in [30]. 

 

DNS DATABASES 
Five DNS databases were used to assess the above 

models. The conditions for various DNS databases are given 

in Table 1.   

 

High-Reynolds Number Non-MHD channel flow 
Satake et al [48] performed DNS calculations in a 

non-MHD channel at a bulk Reynolds number of ~45818 

using 800 million nodes. The mean velocities, RMS of 

velocity fluctuations and TKE budgets were reported. This 

non-MHD case was used as a base case to first evaluate the 

purely hydrodynamic models.  

 

Table 1 Various parameters in different DNS calculations 

considered during evaluation [48-52] 
Geom. Re 

 

Grid (NxxNyxNz) 

Domain (XxYxZ) 

Ha 

 

Wb 

/ /d p dz  

Channel 

(Case-1) 

45818 

(Reτ=1120) 

(Satake et al) 

1024x1024x768 

πx1x2.5π 

0 20.45 

/2.0 

Channel 

(Case-2) 

4586 

(Reτ=150) 

(Iwamoto et al) 

128x97x128 

πx1x2.5π 

 

0 15.28 

/2.0 

Channel 

(Case-3) 

4710 

(Reτ=150) 

(Noguchi et al) 

64x128x64 

0.5πx1x1.25π 

6.

0 

15.7 

/2.0 

Square 

duct 

(Case-4) 

5466 

(Reτ=360) 

(Shinn et al) 

160x160x1024 

1x1x8 

0 15.18 

/4.0 

Square 

duct 

(Case-5) 

5602 

(Reτ=361) 

(Chaudhary et 

al) 

128x128x512 

1x1x16 

21

.2 

1.057 

/0.018 

Where, 1Re
D u




 , 2Re bD W


 , and




10DBHa y . 

Channel: 
1D  , 

2 2D   ( 0.5   is half channel height) 

Square duct: 
1 2D D D  , ( 1D   is the side of the square duct) 

Low-Reynolds Number MHD and Non-MHD channel 
flows 

The non-MHD channel flow data of Iwamoto et al 

[49] has been used to test performance of RANS models at 

lower Reynolds numbers. In his case, Reτ (=δuτ/ν)=150, 

corresponding to bulk Re (=2δWb/ν, δ: half channel 

height)=4586 was used. To test the models for MHD 

turbulence, the MHD channel case of Noguchi et al [50] (Reτ 

(=δuτ/ν)=150, bulk Re (=2δWb/ν)=4710, Ha 

(=sqrt(σ/ρν)B0δ)=6), δ: half channel height) was used.  

 

Low-Reynolds Number MHD and Non-MHD square 
duct flows 

A GPU based code (CU-FLOW) [51] that has been 

previously used for DNS calculations in a non-MHD square 

duct has been extended for DNS calculations of a MHD 

square duct [52]. For the non-MHD case,  (Reτ(=Duτ/ν)=360, 

bulk Re (=DWb/ν)=5466), a duct of size of 1x1x8 non-

dimensional units and 160x160x1024 control volumes (with 

1% grid stretching in wall normal directions) were used.  For 

the MHD case, (Reτ(=Duτ/ν)=361, bulk Re (=DWb/ν)=5602, 

Ha (=sqrt(σ/ρν)B0D)=21.2)) a duct of size of 1x1x16 non-

dimensional units with 128x128x512 control volumes (with 

2% grid stretching in wall normal directions) were used. Both 

these simulations were shown to give grid-independent 

solutions to the relevant equations. 

 

COMPUTATIONAL DETAILS 
Computational Domain, Boundary Conditions and 
Numerical Method 

Taking advantage of fully-developed flow with 

RANS models, the domain size was taken as 1x1x1 non-

dimensional units for both the channel and the square duct. 

For the channel, the top and the bottom walls were electrically 



insulated with no-slip velocity conditions while the 

streamwise (z-) and spanwise (x-) directions were considered 

periodic. In the square duct, the four walls (top, bottom, right 

and left) were electrically insulated with no-slip velocity 

conditions whereas the streamwise direction (z-) is periodic. 

For the MHD calculations, the magnetic field was applied in 

the vertical (y-) direction.  The simulations were carried out by 

fixing the bulk mean flow Reynolds number as given in Table 

1 with the mean streamwise pressure gradient free to change. 

All the calculations were performed using FLUENT’s steady-

state segregated solver with SIMPLE algorithm for pressure-

velocity coupling with either magnetic induction or electric 

potential methods for MHD calculations [30]. For each case, 

the results were ensured to be grid-independent by 

systematically increasing the number of control volumes until 

a grid-independent solution is obtained. All cases were 

converged such that the unscaled absolute residuals reached 

below 10
-3

 to stagnant values.  

 

Grids  
For the high-Re calculations (case 1, Re=45818) with 

EWT, five grids with ten control volumes each in streamwise 

(z-) and spanwise (x-) directions were used. In the wall-

normal (y-) direction, three uniform grids (consisting of 50, 80 

and 130 control volumes) and two non-uniform grids (near-

wall y+ = 1) were used. Figure 1 compares the TKE along the 

wall normal direction in the case of the RKE model with 

EWT. The results show grid independence as y
+
 approached a 

value of one in the cells adjacent to the wall. The coarse grids 

produced peaks in k near the wall that appear closer to the true 

DNS solution.  This occurs if the cell next to the wall is in the 

buffer region for the models with EWT. However, the trend is 

better-matched with the fine grids.  Similar behavior was seen 

for the other high-Re models (RNG, SKE and RSM-LPS); 

hence grid independence plots for other models are not 

presented. All models obtained grid independence with a 

139(non-uniform)x10x10 grid, so this grid was used for 

evaluation of these models. For the models using the SWF and 

NEWF approaches, the first cell center next to the wall should 

be placed in the range of +30 y 300   and, arbitrary grid 

refinement close to the wall is not appropriate. Hence, only 

uniform grids of 30x10x10 with y
+
 in cells next to the wall 

being in the range of 35-40 are used for models with these 

wall functions.  

 
Figure 1 Grid independence study in high-Re channel flow 

for RKE with EWT 

For low-Reynolds number flows (cases 2-5), the 

number of cells required to satisfy near-wall y
+
>30 is too 

small to be accurate. Hence, SWF and NEWF were not 

evaluated for low-Re flows. Only low-Re models (Abid, LB, 

LS, YS, AKN, and CHC) or high-Re models (like SKE, RNG 

(with low-Re differential viscosity model), RKE, and RSM-

linear pressure-strain) with EWT are considered. Two uniform 

(50x10x10 and 80x10x10) and one non-uniform (100x10x10) 

grids were used for RKE, SKE, RNG, and RSM-LPS models 

with EWT to ascertain grid independency. The same grids 

were also used for the RSM-Sω (with low-Re correction) 

model. As the grid is refined to 100 non-uniformly-spaced 

cells, the results show very good grid independence (mostly 

for all above models). Hence this grid is used in all subsequent 

computations of low-Re cases with these models. For the 

square duct, the same grid is used in both the wall-normal 

directions (i.e. 100 x 100 x 10 cells). 

Grid-convergence tests were also systematically done 

for each of the six low-Re k-ε models. All low-Re k-ε models 

were observed to achieve grid independence with 120 cells in 

the wall normal direction (giving a near-wall y
+
 between 0.55-

0.9). Hence this grid is used in all subsequent computations of 

low-Re cases with these models. In square duct flows, the 

same grid resolution of 120 cells is used in both wall-normal 

directions (i.e. 120x120x10).  

 

Computational Costs 
Due to their varying complexities and convergence rates, 

both the total and per-iteration computational times for each 

model were different. The time per iteration and total number 

of iterations to final convergence required by FLUENT (using 

6 cores of a Dell Precision T7400 workstation with 2.66 GHz 

Intel Xeon processor and 8 GB RAM) with different models is 

discussed here based on calculations. As expected, the two 

equation models RKE, RNG and SKE with EWT require 

nearly the same time (per iteration as well as total time). On a 

per-iteration basis, the various two equations models are 5-

30% less expensive than RSM-LPS (which solves 7 transport 

equations) with EWT. However, to obtain final converged 

results, RSM-LPS model is ~13-26 times more expensive. 

With SWF and NEWF, the two equation models are about 20-

30% less expensive than RSM-LPS when compared on a per 

iteration basis but the time required to final convergence by 

RSM-LPS model reduces and it is only slightly more 

expensive. It seems that with finer grids, RSM-LPS model 

becomes increasingly expensive to achieve final convergence 

relative to two equation models. The EWT and SWF/NEWF 

are almost equally expensive for the same grid, but the grid 

required for EWT is much higher. In all models tested, the 

computational requirement increases almost linearly with the 

grid size.  Surprisingly, low-Re RSM-Sω model, which also 

solves 7 equations, is only about twice as expensive as the two 

equation models.  All low-Re k-ε models take nearly the same 

time per iteration, but the total times for LB and LS models 

are smaller. YS model took five times more time than LB and 

LS. 

 

RESULTS AND DISCUSSION 
Results are first presented for non-MHD flows to 

show the accuracy of the various models without magnetic 

field. From these, models giving the best agreement are 

evaluated for the MHD flows after incorporating the changes 

due to the magnetic field effects. 

 

High-Reynolds number non-MHD channel flow 
(Re=45818) 

Figure 2 compares the TKE predicted by the various 

models with the DNS data of Satake et al. [48] for the grid 

independent mesh with EWT. It is seen that all models (RKE, 

RNG, SKE, and RSM-LPS) give nearly the same distribution 

of the TKE.  They underestimate the DNS peak values near 

the wall by 22-27%.  Error decreases with distance from the 

wall, and TKE in the central core is predicted within 10%. 

Figure 3 shows similar behavior with SWF. As theoretically 



required, the near-wall y
+
 has been maintained around 36-37. 

The results with SWF were nearly the same as with the NEWF 

probably because of the lack of flow separation or pressure 

gradient effects in a channel flow. As seen with the EWT, the 

peak value of TKE was again under-predicted, this time by a 

larger amount (42%). The agreement in the core region is 

much better with all the models, except RKE giving slightly 

lower predictions. 

 
Figure 2 Comparison of TKE in various models with EWT 

in high-Re channel flow 

 

 
Figure 3 Comparison of TKE in various models with SWF 

approach in high-Re channel flow 

The non-dimensionalized mean axial velocities 

predicted with the SKE and RSM-LPS models using EWT and 

SWF are presented in Figure 4. The velocity profiles with 

NEWF are not presented as they were nearly the same as with 

SWF. It is seen that the EWT with y
+
=1 resolves velocity 

accurately all the way up to the viscous sublayer and matches 

best with the DNS results across the whole channel. Both 

models performed equally well with EWT, with errors 

consistently within 3%. With SWF, as y
+
 is maintained ~36, 

the cell next to the wall stays in log-law region. Again both 

models predicted mean velocities well, although error with the 

RSM-LPS model increased to ~5% in the central core.  

 
Figure 4 Comparison of normalized mean axial velocity in 

SKE and RSM-LPS with SWF and EWT in high-Re 

channel flow 

The Reynolds normal stresses predicted by the RSM-

LPS model with EWT are compared with the DNS data in 

Figure 5.  Comparison with SWF and NEWF is not presented 

here. However, with SWF and NEWF, the predictions 

matched closely with the DNS data in the core region except 

for the wall normal velocity fluctuations, which were 

underpredicted. The errors increased towards the wall 

especially in the axial and wall normal velocity fluctuations. 

Both wall functions performed equally but both missed the 

peak values close to the wall in all the three velocity 

fluctuations. The peak value of the RMS of axial velocity 

fluctuations is underpredicted by ~36% while the error in 

transverse and spanwise velocity fluctuations is smaller. The 

RMS of spanwise velocity fluctuations matched best with the 

DNS. The RSM-LPS model with EWT performed better than 

with SWF or NEWF in predicting all three velocity 

fluctuations, as expected. Again, the spanwise velocity 

fluctuations were predicted most accurately followed by wall 

normal fluctuations. The error in predicting peak value of 

axial velocity fluctuations reduced from ~36% to ~12% by 

using the EWT. Overall, RSM-LPS with EWT predicted the 

anisotropy of Reynolds normal stresses reasonably well. 

 
Figure 5 Comparison of RMS of velocity fluctuations in 

RSM-linear-pressure-strain with EWT in high-Re channel 

flow 

 

Low-Reynolds number non-MHD channel flow 
(Re=4586) 

We next consider the low-Re non-MHD channel flow 

for which the various low-Re turbulence models are first 

evaluated. Figure 6 compares the TKE predicted by various 

low-Re k-ε models with the DNS.  

 
Figure 6 Comparison of TKE predicted by low-Re k-ε 

models with the DNS in low-Re channel flow 

The LS model greatly overpredicted throughout the 

domain, while the CHC model underpredicted near the wall 

and matched in the core.  The 4 remaining models predicted 

similar values, matching the DNS data within 15% error near 

the wall but over-predicting (by ~60%) in the core. Overall, 

the LB model performed the best of all the models. The YS 

model gave the correct trend across the whole domain, 

consistently overpredicting by 7-30%. The best low-Re k-ε 



models (LB, AKN, and YS) are evaluated for mean axial 

velocity predictions. All three models predicted the mean axial 

velocity profile across the channel very well (within 5% 

error).  

In addition to the low-Re k-ε models, the high-Re k-ε 

models with EWT (RKE, RNG with differential viscosity, and 

SKE) and RSM models (RSM-LPS with EWT and RSM-Sω 

low-Re) also have been evaluated in this low-Re non-MHD 

channel flow. All models, except RNG and RSM-Sω, 

performed similarly by matching the peak values but over-

predicting the values significantly (by ~120%) in the core. The 

RNG model overpredicted slightly more in the core than other 

models. RSM-Sω model matched TKE better in the core. To 

understand the turbulence anisotropy capture by RSM models, 

the RMS of velocity fluctuations predicted by low-Re RSM-

Sω and RSM-LPS model were compared (not shown here) 

with the DNS. The RSM-Sω model, although it predicted the 

TKE best in the core, did not capture the anisotropy of 

Reynolds stresses even qualitatively. Because it was 

outperformed by the RSM-LPS model, the RSM-Sω  model 

was not considered further in this study.  The RSM-LPS 

model with EWT captured anisotropy qualitatively in all 

velocity fluctuations but overpredicted in the core. Figure 7 

shows the comparison of the mean axial velocities given by 

RKE, SKE, and RSM-LPS models. All matched the DNS data 

closely except for some underprediction in the core. 

 
Figure 7 Comparison of mean axial velocity by SKE, RKE, 

RSM-LPS models with EWT with the DNS in low-Re 

channel flow 

 
Low-Reynolds number MHD channel flow (Re=4710, 
Ha=6) 

The models (LB, SKE, and RSM-LPS) which 

performed better in low-Re non-MHD channel flow were then 

tested in low-Re MHD channel flow at a Reynolds number of 

4710 and Ha = 6.0. Comparison of the computed TKE using 

the selected turbulence models with and without inclusion of 

the MHD sources/sinks is shown in Figure 8.  

 
Figure 8 Comparison of TKE in low-Re MHD channel flow 

with various models 

The LB low-Re k-ε model with MHD sources/sinks 

matches the DNS computed turbulent kinetic energy quite 

well in the core but underpredicts the high values close to the 

wall calculated by the DNS. This match in the core seems to 

be fortuitous when overall trend is not predicted that well. The 

peak TKE is seen to be better predicted by LB without the 

MHD sources. The effect of the MHD sources/sinks on 

suppressing turbulence is clearly seen. SKE and RSM with 

EWT matched the peak values closely but overpredicted 

greatly (by 300-500%) in the core. The models using EWT 

show very little effect of MHD source terms.  This is likely 

due to the lack of magnetic field effects in wall treatment 

method.  This contrasts with the strong effect observed in the 

low-Re LB model, where the source terms are applied 

throughout the domain. 

Figure 9 compares the axial velocity in wall 

coordinates. The LB low-Re k-ε model with MHD sources 

gives the best agreement with DNS data. However, part of 

profile in between 15<y
+
<80 is under-predicted. The second 

best prediction is from the LB model without MHD sources. 

The predictions of RSM and SKE are similar, with the RSM-

LPS performing slightly better. The underprediction of the 

normalized velocity in the core is mainly due to the higher 

frictional losses leading to higher friction velocity. The SKE 

and RSM models with EWT do not show much effect of MHD 

sources in the mean velocity. Figure 10 compares the axial 

velocity, as in Figure 9, but this time non-normalized mean 

velocity as a function of distance from the wall in the wall 

normal direction. The close match of predictions from all 

models with the DNS reinforces the assertion that the higher 

frictional losses are causing the differences in predictions in 

Figure 9.  

 
Figure 9 Comparison of normalized mean axial velocity vs. 

normalized wall distance in wall units in low-Re MHD 

channel flow in various models 

 
Figure 10 Comparison of mean axial velocity vs. distance 

from the wall in low-Re MHD channel flow in LB and SKE 

models 

We next examine the MHD source/sink terms in the 

k-equation and compare their magnitude with those extracted 

from the DNS budgets (Figure 11). The trends predicted by all 



3 models are reasonable, but the LB low-Re k-ε model 

matches best with the DNS (within 20%). Although, the SKE 

model predicts the peak closely, it overpredicts the values in 

the core by ~300%. Interestingly, none of the models capture 

the small positive peak very close to the wall.  

 
Figure 11 Comparison of the MHD source/sink in the k-

equation / budget (DNS) in low-Re MHD channel flow in 

various models with the DNS 

Figure 12 presents the sink term due to magnetic field 

in the turbulent dissipation rate (ε) equation. All 3 models 

correctly predict the asymptotic decay of source to dissipation 

to zero in the core.  The LB low-Re model correctly predicts 

the profile qualitatively across the whole channel but 

underestimates the values. The SKE and RSM models predict 

qualitatively similar profiles with negative peaks at y
+
~10. 

The SKE model gives the closest match although errors 

approach 50% near the wall. 

 
Figure 12 Comparison of MHD sink in ε-equation / budget 

(DNS) in low-Re MHD channel flow in various models 

with the DNS 

 

Figure 13 Comparison of the MHD source/sink in ' 'w w -

equation / budget (DNS) in low-Re MHD channel flow in 

RSM-LPS model with the DNS 

Figures 13 and 14 give comparisons of the magnetic 

field source/sink terms in Reynolds normal stresses obtained 

by RSM-LPS. For S
M+

ww, RSM behaves similar to the TKE 

source. It underpredicts the peak value and overpredicts in the 

core. The positive values, which indicate a source in S
M+

ww 

below y
+
<5, are again missed by the model. The MHD sink in 

S
M+

uu is qualitatively captured but the values are over-

predicted across the whole length.  

 
Figure 14 Comparison of MHD source/sink in ' 'u u -equation 

/ budget (DNS) in low-Re MHD channel flow in RSM-LPS 

model with DNS 

 

Low-Reynolds number non-MHD square duct flow 
(Re=5466) 

The models are next evaluated for the fully-

developed turbulent flow in a square duct bounded by four 

walls. For this case, it is well-known that the anisotropy in the 

Reynolds stresses generates cross-stream flows [16], which 

are not present in the laminar case. Turbulence models based 

on isotropic eddy-viscosity cannot predict such secondary 

flows [16]. To predict the secondary flows, it is necessary to 

use either non-linear/anisotropic two equation models [53-56], 

RSMs [57], or algebraic stress models [58].  Hence, models 

other than the above are not expected to be accurate. However, 

they have been considered in this study to assess their 

inaccuracy and to evaluate their relative performance against 

the more expensive RSM. Figure 15 presents the comparison 

of TKE along vertical bisector in a non-MHD square duct 

using LB, RKE, SKE and RSM-LPS models. The grid in all 

models resolved the flow up to the viscous sublayer (y
+
~1).  

The LB model predicts the TKE better than other models. 

However, all models give excessive TKE in the core region by 

over 100%.  

 
Figure 15 Comparison of TKE predicted by various models 

with the DNS along vertical bisector in a non-MHD square 

duct 

Figure 16 compares the mean axial velocity along the 

vertical bisector obtained by the different models. The RKE, 

SKE and LB models show similar reasonable behavior, as 

they agree with the DNS within ~8%.  All 3 models 

overpredict in-between the wall and the core and underpredict 

in the core region. The RSM model expectedly is slightly 

better but matches the other models in underpredicting the 

core region. Compared to the channel, the square duct flow is 

predicted with less accuracy, probably as a result of the 

inability to predict the secondary flows.  



 
Figure 16 Comparison of mean axial velocity predicted by 

various models with the DNS in non-MHD square duct 

along vertical bisector 

 

Figure 17(a) and (b) show the mean axial velocity 

contours and secondary velocity vectors obtained by the DNS 

and the RSM-LPS model. Only the RSM model predicts the 

secondary flows, and hence results of other models are not 

shown. The bulging of the axial velocity profile is not 

predicted to the extent observed in the DNS. 

 

 

 
(a) DNS (Re=5466, Ha=0, Shinn et al [51]) 

(160x160x1024) 

 
(b) RSM-linear-pr-strain, En wall treatment 

(Re=5466, Ha=0, 100x100x10) 

Figure 17 Comparison of mean axial velocity 

contours and secondary velocity vectors in non-

MHD square duct 

 

Low-Reynolds number MHD square duct flow 
(Re=5602, Ha=21.2) 

The final test case considered is the MHD square 

duct flow, which is an appropriate geometry for the industrial 

application of electromagnetics to control flow in the 

continuous casting of steel. Here again, both isotropic 

viscosity-based models and the RSM models are evaluated, 

realizing still that the former cannot predict even qualitatively 

the cross-stream flow fields. Because of the magnetic field 

effects, for a square duct, the profiles of various quantities 

differ between the vertical and the horizontal bisectors. Hence 

profiles are compared along both these directions. Although 

the calculations of the channel flow were performed only 

using the magnetic induction method available in FLUENT, in 

the square duct flow, both magnetic induction and electric 

potential methods have been tested. The maximum magnitude 

of the induced magnetic field in the current simulations is only 

0.039% of the externally applied field, so the magnetic 

induction method and electric potential method give virtually 

identical results.  

Figures 18 and 19 compare the TKE along vertical 

and horizontal bisectors respectively obtained from various 

models and the results of the DNS.  

 
Figure 18 Comparison of TKE in various models with the 

DNS in MHD square duct along vertical bisector 

 

 
Figure 19 Comparison of TKE in various models with the 

DNS in MHD square duct along horizontal bisector 

It can be seen that MHD suppresses the turbulence 

more along the vertical bisector than along the horizontal 

bisector and only the LB model with MHD sources is able to 

predict this trend, reasonably matching with DNS (generally 

within 50%). The results with LB without MHD sources 

overpredict the DNS data by 100-500%. The MHD 

sources/sinks proposed by Kenjereš and Hanjalić [12-13] 

provide significant improvements by predicting the correct 

trend of turbulence suppression, especially using the LB 

model. Both the RKE and RSM models over-predict the 

turbulence energy in the core along both the bisectors by 

~500%. Moreover they do not capture the strong differential 

suppression of turbulence along the two bisectors, as was seen 

in the DNS and in the results of LB model with MHD sources. 

On the horizontal bisector close to the side walls, turbulence is 

not suppressed much because the induced current is parallel to 

the magnetic field in this region. The RKE and RSM models 

predict the peak value of the TKE better along the horizontal 

bisector. Surprisingly, the RSM model is found to perform the 



worst among the tested models for suppressing turbulence by 

magnetic field effects. 

Figure 20 presents mean axial velocity contours and 

mean secondary velocity vectors in the cross-section. As 

shown by the DNS, the mean axial velocity contours and the 

secondary flows are significantly altered in the presence of the 

transverse magnetic field. The secondary velocities, rather 

going into corners, now go towards the top and bottom walls, 

thus lifting the axial velocity contours in these regions towards 

the top and the bottom walls.  After hitting the walls, these 

secondary flows move parallel to the top and bottom walls 

before turning towards the core at the center and thus cause a 

strong bulging in mean axial velocity there. This effect of 

strong bulging is not seen close to the side walls. It can be 

seen that none of the models is able to capture this effect. 

Although RSM predicts secondary flows, the differential 

effect of the magnetic field close to the top /bottom walls and 

the right/left side walls is missing. RSM predicts almost 

symmetric mean secondary and axial velocities except for a 

slight elongation of mean axial velocity (i.e. flattening) in the 

vertical direction. As mentioned earlier, LB and RKE do not 

predict secondary flows at all and over-predict the velocity 

flattening in the vertical direction. Both the k-ε models (LB 

and RKE) predict similar axial velocity across the cross-

section. 

 
DNS (Chaudhary et al [52]) 

(Re=5602, Ha=21.2, 

128x128x512) 

 
RSM, En wall treatment, 

Mag-Induction (Re=5602, 

Ha=21.2, 100x100x10) 

 
Realizable k-ε, En wall 

treatment, Mag-Induction 

(Re=5602, Ha=21.2, 

100x100x10) 

 
LB, Low-Re k-ε, 

Mag-Induction  (Re=5602, 

Ha=21.2, 120x120x10) 

Figure 20 Comparison of mean axial velocity contours 

and secondary velocity vectors in MHD duct 

Figure 21 and 22 show the MHD sources/sinks in the 

TKE equation computed by the various models. The velocity-

electric potential gradient correlation acts as a source whereas 

the Reynolds normal stresses perpendicular to the magnetic 

field act as sinks, as shown in the DNS data. The sink is 

stronger than the source giving a net effect of suppressing the 

turbulence. It can be seen that the LB model predicts this 

source reasonably correctly, followed by RKE and then RSM-

LPS. The predictions are better along the stronger Lorentz 

force bisector. Both the RKE and the RSM-LPS over-predict 

the MHD sources to TKE along both bisectors.  

 
Figure 21 Comparison of MHD source/sink in k-equation / 

budget (DNS) predicted by various models with the DNS in 

MHD square duct along vertical bisector 

 

 
Figure 22 Comparison of MHD source/sink in k-equation / 

budget (DNS) in various models with the DNS in MHD 

square duct along horizontal bisector 

 

The friction factor along bottom horizontal and left 

vertical walls is presented in Figure 23.  

 
Figure 23 Comparison of the friction factor in MHD square 

duct along bottom-horizontal and left-vertical walls in 

various models with the DNS 

Along the bottom horizontal wall, the friction factor 

shows two side peaks with a large dip at the center. Along left-

vertical wall, the friction factor shows a central flat region 

with two side dips. None of the models is seen to predict these 

trends correctly. Both the k-ε models (LB and RKE) give 

similar profiles, with a central overpredicted peak. The RSM-

LPS model predicts the side peaks with a central dip along 

both walls but does not completely agree with the DNS 

results. RSM suggests larger frictional losses, especially in the 

corners. The best agreement is seen with LB model with MHD 

sources. The LB model, without MHD sources, overpredicts 

friction along both walls.  

 
CONCLUSIONS 

In this study several turbulence models of k-ε and 

Reynolds stress transport category are evaluated for their 



ability to predict turbulent flow fields subjected to a magnetic 

field. Five test cases of flows in a channel and square duct 

have been computed and the results are compared with DNS 

data. The MHD sources/sinks in k- and ε- equations for k-ε 

models and in Reynolds stresses for RSM, as proposed by 

Kenjereš and Hanjalić [12-13], were implemented through 

UDFs in the FLUENT code. The performance of these 

models, on the basis of their predictions of mean velocities, 

RMS of velocity fluctuations, TKE, MHD sources and 

frictional losses can be summarized as follows: 

In both high- and low-Re channel flows, all of the 

models predicted mean axial velocity reasonably well (within 

5% error), given fine-enough grids for grid-independence 

(EWT and low-Re) or satisfaction of the y+ requirements 

(SWF and NEWF). However, the TKE was much less 

accurate, often exceeding 60% overprediction in the core.  In 

high-Re channel flows, models underpredicted near-wall peak 

turbulence energy whereas in low-Re channel flows, they 

showed better agreement near the wall but over-predicted 

values in the core. For the MHD flows, the implementation of 

the MHD sources improved predictions for low-Re k-ε 

models.  The high-Re models which use the wall treatments 

did not show much improvement with MHD sources, perhaps 

due to the lack of MHD effects in the wall formulations.   

In the case of low-Re square duct flows, the models 

tested did not predict the mean axial velocities to a good 

accuracy (error ranging ~8-30%) because of the secondary 

flows generated due to turbulence anisotropy. The TKE was 

overpredicted in the core, often exceeding ~60%, by all 

models except LB in MHD duct. The effect of turbulence 

suppression by magnetic field was not properly captured on 

mean velocity, Reynolds stresses/turbulent kinetic energy and 

frictional losses by any single model in a MHD duct, even 

after inclusion of the MHD sources of turbulence.  

For problems involving high-Re, the SKE model 

offers reasonable accuracy at low computational cost.  Adding 

EWT improves accuracy slightly over standard wall laws, but 

significantly increases cost.  For flows with low-Re number, 

the Lam-Bremhorst (LB) low-Re k-ε model performed better 

than the others in both hydrodynamic and magnetic field 

influenced turbulent flows. Given the need to compute 

complex industrial flows with efficient computational use, 

using these 2 models with appropriate changes for magnetic 

field effects provides a reasonable compromise of accuracy 

and speed.  Finally, the RSM-LPS model with EWT offers 

similar accuracy with the added ability of capturing turbulence 

anisotropy and secondary flows, but its computational cost is 

very high.  
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